Feature Detection and Feature Description

feature_simpleJust like above, blue patch is flat area and difficult to find and track. Wherever you move the blue patch, it looks the same. For black patch, it is an edge. If you move it in vertical direction (i.e. along the gradient) it changes. Put along the edge (parallel to edge), it looks the same. And for red patch, it is a corner. Wherever you move the patch, it looks different, means it is unique. So basically, corners are considered to be good features in an image. (Not just corners, in some cases blobs are considered good features).

So now we answered our question, “what are these features?”. But next question arises. How do we find them? Or how do we find the corners?. That also we answered in an intuitive way, i.e., look for the regions in images which have maximum variation when moved (by a small amount) in all regions around it. This would be projected into computer language in coming chapters. So finding these image features is called Feature Detection.

So we found the features in image (Assume you did it). Once you found it, you should find the same in the other images. What we do? We take a region around the feature, we explain it in our own words, like “upper part is blue sky, lower part is building region, on that building there are some glasses etc” and you search for the same area in other images. Basically, you are describing the feature. Similar way, computer also should describe the region around the feature so that it can find it in other images. So called description is called Feature Description. Once you have the features and its description, you can find same features in all images and align them, stitch them or do whatever you want.

So in this module, we are looking to different algorithms in OpenCV to find features, describe them, match them etc.


  1. 头像


  1. Pingback: SPACES of JIA